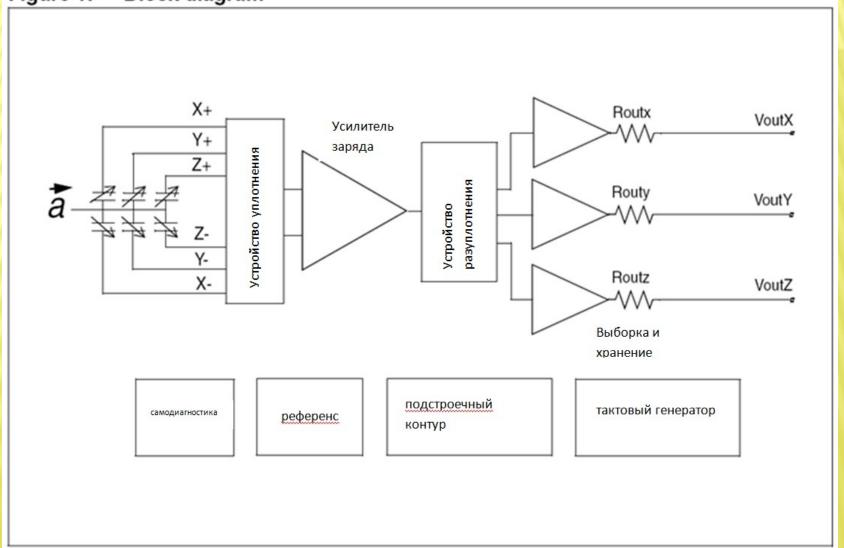
ОЛИМПИАДА ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»

Исследование и разработка топологии акселерометра и гироскопа гиростабилизации платы летательного аппарата

Автор: Мирошниченко Сергей Сергеевич.

Научный руководитель: Школьников

Владимир Михайлович.


Целью настоящей работы являлось изучение конструктивно-технологических решений современных устройств.

Для достижения поставленной темы необходимо было решить следующие задачи:

- 1) исследовать топологию акселерометра и гироскопа
- **×** 2)

БЛОК СХЕМА АКСЕЛЕРОМЕТРА

Figure 1. Block diagram

Характеристики:

- однополярное питание, напряжение от 2,4 до 3,6 В;
- возможность выбора диапазона измерений пользователем, ±2g/±6g;
- выходное напряжение, смещение и чувствительность пропорциональны напряжению питания;
- встроенная система самодиагностики;
- * высокая ударостойкость (10 000 g).

AKCEЛЕРОМЕТР LIS344ALH ИСПОЛЬЗУЕТСЯ:

- **ж** в мобильных терминалах;
- * в устройствах ввода информации в игровых приставках и виртуальных симуляторах реальности;
- * противоугонных системах и системах инерциальной навигации;
- * в бытовом и робототехническом оборудовании.

СОБСТВЕННЫЙ ИС-ИНТЕРФЕЙС

- 1) Первый этап характеризуется работой емкостного усилителя с низким уровнем шума, который реализует двойную коррелированную выборку (CDS) на выходе, чтобы компенсировать смещение и фликкерный шум.
- 2) Произведённый сигнал затем направляется к трем различным зонам выборки и хранения информации (одна зона на один канал), при этом становится возможным его вывод. Все аналоговые параметры (смещение выходного напряжения и чувствительность) пропорциональны напряжению питания.

БЛОК СХЕМА ГИРОСКОПА

FUNCTIONAL BLOCK DIAGRAM +5V (ADC REF) v_{RATIO} ST2 ST1 TEMP ADXRS620 AV_{CC} 100nF 25kΩ 25kΩ самодиагностика @ 25°C AGND Демодулятор Механический Усилитель привода датчик Усилитель переменного тока Амплитуда тахогенератора +5V 180kΩ ±1% V_{DD} Зарядовый насос для питания 100nF резонатора и регулятор напряжения **PGND** CP2 CP3 CP4 CP5 RATEOUT SUMJ 100nF COUT

Характеристики:

- Интегрированный однокристальный прецессионный гироскопический датчик угловой скорости вращения относительно вертикальной оси.
- Надежная система виброзащиты, перекрывающая широкий частотный диапазон.
- Устойчивость к ударам 2000 g
- Привязка выходного напряжения к внешнему опорному напряжению с изменением в логометрическом режиме
- Однополярное питание 5В
- Рабочая температура 105°С
- Система самодиагностики с цифровым управлением
- [★] Миниатюрный и легкий (<0,15 см³, <0,5 г)
 </p>
- Выходной датчик показания температур

ГИРОСКОП ADXRS620 ИСПОЛЬЗУЕТСЯ В:

* системах стабилизации автомобилей;

* блоках инерциальных измерителей;

ж системах стабилизации платформ.

БЕСКОРПУСНЫЕ ИМС

Надежность бескорпусных ИМС выше, чем корпуссированных, по следующим причинам:

- уменьшено количество микросварных и паяных соединений на одну контактную площадку
- исключено влияние корпуса на функционирование ИМС
- улучшены условия теплоотвода за счет непосредственного монтажа

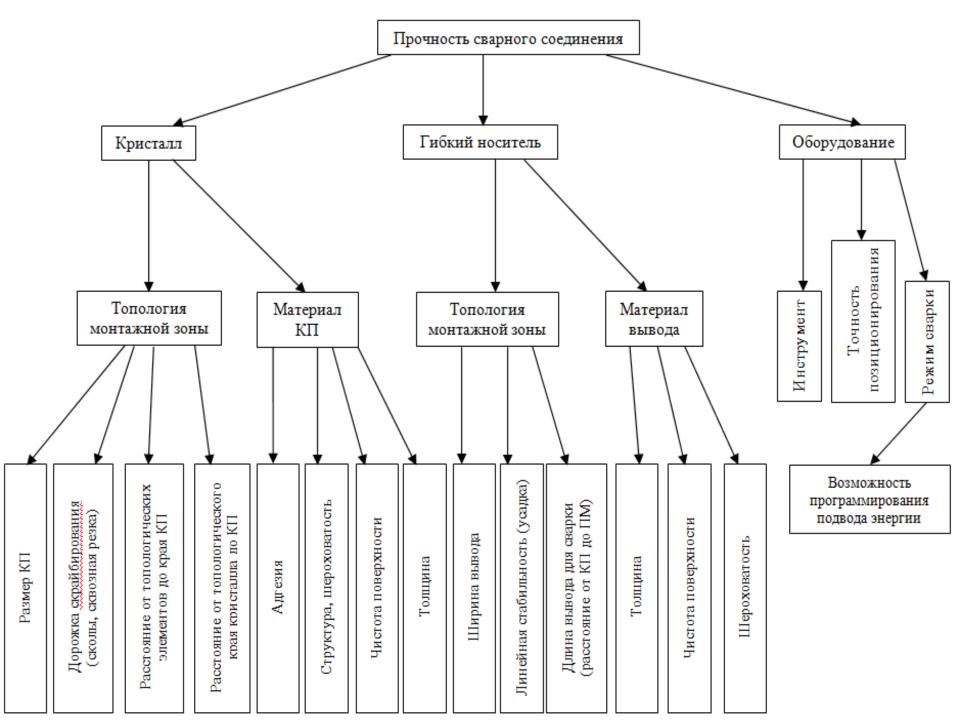
Наибольшее распространение организованных выводов получили:

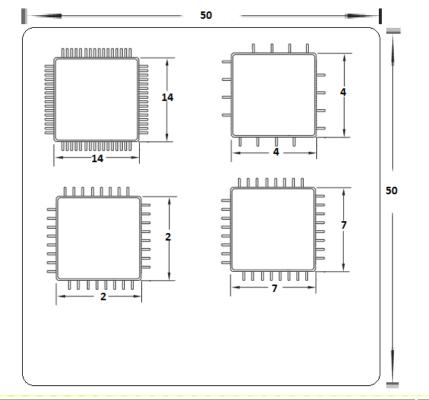
- * присоединение с помощью балочных выводов
- * присоединение перевернутым кристаллом с шариковыми (столбиковыми) выводами (flip-chip)
- * сборка с использованием гибких полимерных носителей.

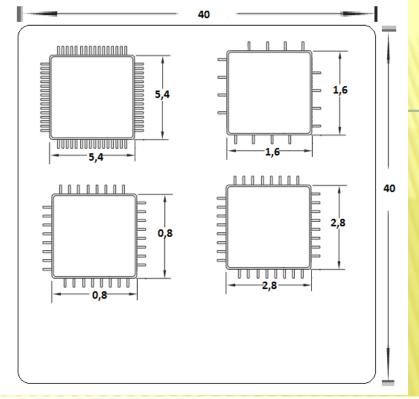
ПРЕИМУЩЕСТВА ИМС С БАЛОЧНЫМИ ВЫВОДАМИ:

- при монтаже на плату приваривают или припаивают только только концы наружных частей балок, поэтому сами кристаллы не подвергаются механическим воздействиям
- возможность визуального контроля качества
- хороший теплоотвод

Минусы:


- дополнительный расход кремния, обусловленный формированием на поверхности кремниевой пластины, нараяду с активной частью микросхемы, балочных выводов;
- существенное усложнение технологического процесса, связанное с формированием балочных выводов и разделением кремниевых пластин с помощью анизотропного травления;
- хрупкость балочных выводов и возможность повреждения изоляции между балочным выводом и кристаллом.


ПРЕИМУЩЕСТВА ИМС С ШАРИКОВЫМИ И СТОЛБИКОВЫМИ ВЫВОДАМИ:


- высокую плотность активных элементов и ИМС на кремниевой пластине, так как внешние выводы не требуют дополнительной площади кристалла;
- возможность автоматизации операции монтажа элементов на платы, ее высокую производительность;
- хорошую ремонтопригодность.

Минусы:

- * трудоемкость контроля качества соединения выводов элементов с контактными площадками платы
- жесткая связь кристалла с платой, что при определенных условиях может повлиять на надежность соединения вследствие различного коэффициента термического линейного расширения кристалла и платы.

До применения бескорпусной технологии монтажа

После применение бескорпусной технологии монтажа

количество паяно-сварных соединении					
Акселерометр	Гироскоп	Акселерометр	Гироскоп		
48	96	32	64		
Габариты устройств (в мм)					

Акселерометр	Гироскоп	Акселерометр	Гироскоп
4x4x1.5	7x7x3	1,6x1,6x0,6	2,8x2,8x1,2

ЗАКЛЮЧЕНИЕ

Получается, что применение технологии бескорпуного исполнения современных устройств:

- * позволяет повысить быстродействие изделий на 15-20% и сократить массу и объем аппаратуры в 2-3 раза по сравнению с корпусным исполнением аналогичных изделий;
- * снизить трудоёмкость сборочно-монтажных операций почти в 2 раза.

Были выполнены следующие задачи:

× 1)