Moscow State Technical University
lU-4 department: «The design and technology
of the electronic equipment»

Menshov Kirill Anatolievitch

The laboratory complex
for research of digital audiostreams
compression algorithms

Research manager: PhD., professor Myslovsky E.V.

Moscow
2004

Goals and objectives

Goal: to develop a laboratory complex for creation, research and optimization
of algorithms for digital audiostreams compression

Objectives:

Perform the analysis of methods and formats for a digital sound
representation

Investigate existing methods of digital audiostreams compression

Perform the analysis of existing hardware for digital audiostreams
processing and to choose ones for implementation of a complex

Develop a methodology for creation of applications for digital audiostreams
compression and working with the laboratory complex

Implement an algorithm of audiostream compression in real time, providing
significant reduction of data volume without essential loss of quality

Offer a methods for quality testing of various algorithms for audiostreams
compression

Representation of a sound in a digital form

Analogue —__
signal

Pulse-amplitude
‘ modulation

PAM impulses

PWM impulses

Pulse-width
modulation

Analogue
signal

PCMlmpulses
AT AT ===
l. \ | | i modulation
Analogue
signal

The format for storing the non compressed digital sound representation

Offset Name Length Description ffset Name Length Description

00h rID 4h Format ID: «RIFF» 00h wiD 4h Chunk ID: «\WAVE»
04h rLen 4h The length of the data in the next chlyk/ 04h Format 14h — O
08h rData rLen o 18h waveData — / -

1 OO

Offset Name Length Description
00h fID 4 Chunk 1D: «fmt»
04h fLen 4 Length of data in the Format chunk
08h WrormatTag 2 Ol :>, wFormatTag value
0Ah nChannels 2 Number of channels WAVE_FORMAT_PCM (0x0001)
0Ch nSamplesPerSec 2 Playback frequency FORMAT_MULAW (0x0101)
OEh nAvgBytesPerS 2 The average number of bytes per sec., L2 PO AL ()
ec the data should be transferred at IBM_FORMAT_ADPCM (0x0103)
10h nBlockAlign 2 The block alignment of the data in the
data chunk
12h FormatSpecific 2 Format specific data area Offset Name Length Description
00h dID 4h Chunk ID: «data»
04h dLen 4h Length of data in the dData field
Samp|es order in the dData block: 08h dData dLen The actual waveform data
M1 M2 M3 M4
| | | | | Mono
L1 R1 L2 R2

N T] stereo

140

120

—_
D (o]
o o

8-bit mu-Law samples

H
o

20

The audiodata compression methods

Nonlinear compression:

log(1 + 255s])
log(1+ 255)

u-Law: sm=sign(s)-

Considering the positive log(1+ 255s)

values only, the formula sm

becomes: N log(1+ 255)

Reverse conversion:
o 256-sm-1
255

00

'G.711 algorithm—
Precise algorithm- ...

..
1 1 1 i i i
5000 10000 15000 20000 25000 30000

16-bit linear samples

35000

nA® 55
A-Law: sA=<{, +1+in
1+ In(As) is\s\gl
L 1+InA A

Differential coding:

The SHARC EZ-KIT Lite evaluation module

Flag LEDs
. FLAG
Switches Lu'lu_ Power
IRQ | @ connector
RESET |
- Power LED

Emulator §—— Line in (stereo)

b E—_
connector|JTAG PORT Sﬂ‘ﬂ’ CODEC <—<l—o Mic 1n (stereo)

o Line out (stereo)

External ‘

processor
bus

UART PROM

Asynchronous

serial port 4—P| RS-232
connector

External connections of the SHARC EZ-KIT Lite

Serial port (RS-232) connector

0l 10

:l Stereo Audio
Output
] Stereo Audio

In-Circuit Emulator Input
Connector
0O 000
FARCeellscs
=
EZ-KIT LITE ~ Q]| FLAG
U LEDs
o Y s | o |
0] | s=e)

Ol| reset

ANALOG
DEVICES O

DC Power suppl

Central processing unit of the SHARC EZ-KIT Lite

/ PM Data Bus /

A Instruction
¢ Rn=LSHIFT Rx BY Ry
Z Dv pata bus ¢ Rn=LSHIFT Rx BY <data8>
A ¢ Rn=RnORLSHIFT Rx BY Ry
¢ Rn=RnORLSHIFT Rx BY <data8>
¢ Rn=ASHIFT Rx BY Ry
¢ Rn=ASHIFT Rx BY<data8>
y y ¢ Rn=RnORASHIFT Rx BY Ry
¢ Rn=RnORASHIFT Rx BY <data8>
Rn=ROT Rx BY RY
Rn = ROT Rx BY <data8>
. Rn = BCLR Rx BY Ry
{ Register * * Y * Rn = BCLR Rx BY <data8>
file Rn = BSET Rx BY Ry
Rn = BSET Rx BY <data8>
Rn = BTGL Rx BY Ry
. . s Rn = BTGL Rx BY <data8>
Multiplier Shifter ALU BTST Rx BY Ry
X BTST Rx BY <data8=
16X40-bit
P
. 1 |
Yy " Instruction ASTAT Flags STKY Flags
Y MU MN MV Ml MUS MOS MVS MIS
Fixed-Point:
MR2 MR1 MRO
Rn |= Rx*Ry (|s||s| Fl) L 1 o
MRF uvliul 1
MRB FR
Rn = MRF| + Rx=Ry (ls”sl Fl) «oe e D o
Rn = MRB Ul Ul |1
MRF = MRF FR|
MRB = MRB
Rn = MRF Rx + Ry (‘s”sl F|)] “
Rn = MRB Ul Ul 4
MRF = MRF FR|
MRB = MRB
Rn = SATMRF (S .o e W -
Rn = SATMRB (un
MRF = SAT MRF (SF)
MRB = SAT MRB (UF)
Rn = RND MRF (SF) < =+ 0 .
Rn = RNDMRB (UF)
MRF = RND MRF
MRB = RND MRB
MRF | =0 00 00
MRB
MRxF |= Rn 0 0 0 0
MRxB
Rn =|MRxF 0 0 0 0
MRxB

Floating-Point:

Fn=Fx*Fy

Flags
SV

N

- T

t 22 e e 2t e e eer e

cocoocococooooooooooooy

Instruction

Fixed-point:

¢ Rn=Rx+Ry

¢ Rn=Rx-Ry

¢ Rn=Rx+Ry+C(Cl

¢ Rn=Rx-Ry+CI-1
Rn= (Rx + Ry)/2
COMP(Rx, Ry)
Rn=Rx + CI
Rn=Rx+CI-1
Rn=Rx+1
Rn=Rx -1

¢ Rn=-Rx

¢ Rn=ABSRx

Rn = PASS Rx

Rn=Rx AND Ry

Rn=Rx ORRy

Rn=Rx XOR Ry

Rn=NOT Rx

Rn = MIN(Rx, Ry)

Rn = MAX(Rx, Ry)

Rn = CLIP Rx BY Ry

Floating-point:

Fn=Fx+Fy

Fn=Fx-Fy

Fn = ABS (Fx + Fy)

Fn = ABS (Fx - Fy)

Fn=(Fx+ Fy)/2

COMP(Fx, Fy)

Fn=-Fx

Fn = ABS Fx

Fn = PASS Fx

Fn=RND Fx

Fn=SCALB Fx BY Ry

Rn=MANT Fx

Rn=LOGB Fx

Rn = FIX Fx BY Ry

Rn = FIX Fx

Fn = FLOAT Rx BY Ry

Fn=FLOAT Rx

Fn = RECIPS Fx

Fn = RSQRTS Fx

Fn = Fx COPYSIGN Fy

Fn = MIN(Fx. Fy)
Fn = MAX(Fx, Fy)
Fn= CLIP Fx BY Fy

Rn = FDEP Rx BY Ry

Rn = FDEP Rx BY <bit6>:<len6>

Rn = Rn OR FDEP Rx BY Ry

Rn = Rn OR FDEP Rx BY <bit6>:<lenf>
Rn = FDEP Rx BY Ry (SE)

Rn = FDEP Rx BY <bit6>:<len6> (SE)
Rn = Rn OR FDEP Rx BY Ry (SE)

Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE)
Rn = FEXT Rx BY Ry

Rn = FEXT Rx BY <bit6>:<len6>

Rn = FEXT Rx BY Ry (SE)

Rn = FEXT Rx BY <bit6>:<len6> (SE)
Rn = EXP Rx (EX)

Rn = EXP Rx

Rn = LEFTZ Rx

Rn = LEFTO Rx

Rn = FPACK Fx

Fn = FUNPACK Rx

R N O K- E-R-R-R-R-N-F-F-E-N-]

SO+t s s ot ettt
O+t OO s s s s

STKY Status Flags

ASTAT Status Flags
AZ AV AN AC AS Al
P T)
s+« v« 9 0 0
® o3 RO g & W
AT B S O S
* & 2 % B @ W
*0 * 0 0 0 0 *
« o+« « 0 0 0
« o+ o« « 0 0 o0
« o« o« = 0 0 0
I I
oo & 0 @ & W
** 0 0 * 0 0
* 0 * 0 0 0 O
o * 0 00 4
* 0 * 0 0 0 0
* 0 * 0 0 0 0
*0 * 0 0 0 0
0 * 0 0 0 0
* 0 * 0 0 0 O
* 0 * 0 0 0 O
. . R
AR - T | G N |
I | B N ¢ (R 1
** 0 0 0 * 1
G | G | G SO 1
* e 2 e @9 ¢ L ®
. W R oo By ¥l
R Y 1
o * My @ % =l
o0 0 ¢ 1
« o+« 0 0 * 1
N I 1
« o+« 0 0 ¢ 1
Rt | S N R |
& == 2 oy O ¥ 1
0 0 0 1
0 * 0 0 0 1
% = & M 0 ¥ 1
« o+ = 0 0 ¢ 1
. A | |
s ¢ IO A | FE 1
L SO | ¢ S 1
. | R | | S |

AF CACC AUS AVS AOS AlS

Creation of the digital signal processing applications

=)

2

Architecture
description

(.ach-file)

v

Assemble
file (s

)

C Language
file(s)

Link

v

Simulate

—

EFmulate

v

Program PROM (s

)

(End)

Buffer initiali-
zation data files
(.DAT)

J

:

Assembly language
ource code file(

. s)
(.ASM)

INCLUDE
file(s)

Assembler

(ASM21K)

{

\ 4
LlSt file
.LST)

Y
Object file
.OBJ)

Library file(
.A or .LIB

)

{

Object file(

(.OBJ)

J L

Architecture
description file
(.ACH)

Lo

l

Linker (LD21K)

A 4

[M

A 4

emory image file
(.EXE)

Memory map file
(.MAP)

The IMA ADPCM audiodata compression algorithm

16 bits

16 bits

16 bits

16 bits

4 bits

4 bits

=

-—

4 b|t 4 bits)

X[n] ; D[n]

B - a sign of increment

- a value code

Xp[n-1]

Adaptive
predictor

Adaptive Cl[n] >
quantizer
X Dq[n] ~
pn] 4 Adaptive

dequantizer

Data decoding in the IMA ADPCM algorithm

C[n] Adaptive Dq[n] N Xp[n] N
' dequantizer '
 — |
=
Xp[n-1] Adaptive
predictor
_ Index
Lower 3 bits of) adjustment __ _ Step size
the ADPCM-code | Adjustment table Limit value ,| Stepsize table P
lookup between 0 and 88 lookup

Index from the
previous iteration

Mathematical description of the IMA ADPCM

Decoding:

_(C, +0.5)-Sifl,]

X, =X _,+D,

+1 = In + Ia[‘Cn‘]

la:

Coding:
X, =0 X, =0
,=0 l, =0
Dn — Xn o Xn—l D
n
C - 4. Dn
n -
Sil,]
In+1=In+Ia[‘Cn‘] n
SI:
7, 8, 9, 10, 11, 12, 13, 14, lo,
17, 19, 21, 23, 25, 28, 31, 34, 37,
41, 45, 50, 55, 60, 66, 73, 80, 88,
97, 107, 118, 130, 143, 157, 173, 190, 209,
230, 253, 279, 307, 337, 371, 408, 449, 494,
544, 598, 658, 724, 796, 876, 963, 1060, 11660,
1282, 1411, 1552, 1707, 1878, 2006, 2272, 2499, 2749,
3024, 3327, 3660, 40206, 4428, 4871, 5358, 5894, 0484,
7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289,
16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767

Methods for quality testing of various compression algorithms

The average
AFR
comparison

5000 6ODD 7000 800D 900D 10000 14000 12000 13000 14000 15000, 16000 17000 18000, 19000 20000 21000

2]
o
cC C
‘= O
% 82

S
S8
@)
> £

@)
2o
|_

The method implies subjective comparison of a sounding quality. The tested signal is

o) é) represented in two variants: the original and the compressed signal. The user attentively
c c listens the original signal once. Then the user "blindly" listens the unknown order of N original
[oe) ﬁ signals and N compressed signals. During each separate listening the user makes a decision,
¥ O if he listens to the original signal or not, writing down the estimation. Upon the end of the

'}

testing the correct/incorrect decisions ratio is evaluated. The closer this ratio is to 1, the less
different the original and compressed signals are.

Conclusions and results

Performed the analysis of methods and formats of a digital sound
representation

e Existed methods of digital audiostreams compression investigated
e Implemented the laboratory complex and developed methodology for

creating applications of digital audiostreams compression and use of
the complex

Implemented the algorithm for audiostream compression and
decompression, providing 4-time volume reduction for the audiodata
in real time

Methods for quality testing of various algorithms for audiostreams
compression are offered

On the theme of this work 3 articles were announced in science
conference reports corpus and in periodical magazine, also the study
guide was published

