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Goals and objectives

Goal: to develop a laboratory complex for creation, research and optimization
of algorithms for digital audiostreams compression

Objectives:

Perform the analysis of methods and formats for a digital sound
representation

Investigate existing methods of digital audiostreams compression

Perform the analysis of existing hardware for digital audiostreams
processing and to choose ones for implementation of a complex

Develop a methodology for creation of applications for digital audiostreams
compression and working with the laboratory complex

Implement an algorithm of audiostream compression in real time, providing
significant reduction of data volume without essential loss of quality

Offer a methods for quality testing of various algorithms for audiostreams
compression



Representation of a sound in a digital form
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The format for storing the non compressed digital sound representation

Offset Name Length Description ffset Name Length Description

00h rID 4h Format ID: «RIFF» 00h wiD 4h Chunk ID: «\WAVE»
04h rLen 4h The length of the data in the next chlyk/ 04h Format 14h — O
08h rData rLen o 18h waveData — / -

1 OO

Offset Name Length Description
00h fID 4 Chunk 1D: «fmt»
04h fLen 4 Length of data in the Format chunk
08h WrormatTag 2 Ol :>, wFormatTag value
0Ah nChannels 2 Number of channels WAVE_FORMAT_PCM (0x0001)
0Ch nSamplesPerSec 2 Playback frequency FORMAT_MULAW (0x0101)
OEh nAvgBytesPerS 2 The average number of bytes per sec., L2 PO AL ()
ec the data should be transferred at IBM_FORMAT_ADPCM (0x0103)
10h nBlockAlign 2 The block alignment of the data in the
data chunk
12h FormatSpecific 2 Format specific data area Offset Name Length Description
00h dID 4h Chunk ID: «data»
04h dLen 4h Length of data in the dData field
Samp|es order in the dData block: 08h dData dLen The actual waveform data
M1 M2 M3 M4
| | | | | Mono
L1 R1 L2 R2

N T ] stereo
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The audiodata compression methods

Nonlinear compression:

log(1 + 255s])
log(1+ 255)

u-Law: sm=sign(s)-

Considering the positive log(1+ 255s)

values only, the formula sm

becomes: N log(1+ 255)

Reverse conversion:
o 256-sm-1
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The SHARC EZ-KIT Lite evaluation module
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External connections of the SHARC EZ-KIT Lite

Serial port (RS-232) connector
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Central processing unit of the SHARC EZ-KIT Lite

/ PM Data Bus /

A Instruction
¢ Rn=LSHIFT Rx BY Ry
Z Dv pata bus ¢ Rn=LSHIFT Rx BY <data8>
A ¢ Rn=RnORLSHIFT Rx BY Ry
¢ Rn=RnORLSHIFT Rx BY <data8>
¢ Rn=ASHIFT Rx BY Ry
¢ Rn=ASHIFT Rx BY<data8>
y y ¢ Rn=RnORASHIFT Rx BY Ry
¢ Rn=RnORASHIFT Rx BY <data8>
Rn=ROT Rx BY RY
Rn = ROT Rx BY <data8>
. Rn = BCLR Rx BY Ry
{ Register * * Y * Rn = BCLR Rx BY <data8>
file Rn = BSET Rx BY Ry
Rn = BSET Rx BY <data8>
Rn = BTGL Rx BY Ry
. . s Rn = BTGL Rx BY <data8>
Multiplier Shifter ALU BTST Rx BY Ry
X BTST Rx BY <data8=
16X40-bit
P
. 1 |
Yy " Instruction ASTAT Flags STKY Flags
Y MU MN MV Ml MUS MOS MVS MIS
Fixed-Point:
MR2 MR1 MRO
Rn |= Rx*Ry (|s||s| Fl) L 1 o
MRF uvliul 1
MRB FR
Rn = MRF| + Rx=Ry (ls”sl Fl) «oe e D o
Rn = MRB Ul Ul |1
MRF = MRF FR|
MRB = MRB
Rn = MRF Rx + Ry (‘s”sl F|) ] “
Rn = MRB Ul Ul 4
MRF = MRF FR|
MRB = MRB
Rn = SATMRF (S .o e W -
Rn = SATMRB (un
MRF = SAT MRF (SF)
MRB = SAT MRB (UF)
Rn = RND MRF (SF) < =+ 0 .
Rn = RNDMRB (UF)
MRF = RND MRF
MRB = RND MRB
MRF | =0 00 00
MRB
MRxF |= Rn 0 0 0 0
MRxB
Rn  =|MRxF 0 0 0 0
MRxB

Floating-Point:

Fn=Fx*Fy

Flags
SV
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Instruction

Fixed-point:

¢ Rn=Rx+Ry

¢ Rn=Rx-Ry

¢ Rn=Rx+Ry+C(Cl

¢ Rn=Rx-Ry+CI-1
Rn= (Rx + Ry)/2
COMP(Rx, Ry)
Rn=Rx + CI
Rn=Rx+CI-1
Rn=Rx+1
Rn=Rx -1

¢ Rn=-Rx

¢ Rn=ABSRx

Rn = PASS Rx

Rn=Rx AND Ry

Rn=Rx ORRy

Rn=Rx XOR Ry

Rn=NOT Rx

Rn = MIN(Rx, Ry)

Rn = MAX(Rx, Ry)

Rn = CLIP Rx BY Ry

Floating-point:

Fn=Fx+Fy

Fn=Fx-Fy

Fn = ABS (Fx + Fy)

Fn = ABS (Fx - Fy)

Fn=(Fx+ Fy)/2

COMP(Fx, Fy)

Fn=-Fx

Fn = ABS Fx

Fn = PASS Fx

Fn=RND Fx

Fn=SCALB Fx BY Ry

Rn=MANT Fx

Rn=LOGB Fx

Rn = FIX Fx BY Ry

Rn = FIX Fx

Fn = FLOAT Rx BY Ry

Fn=FLOAT Rx

Fn = RECIPS Fx

Fn = RSQRTS Fx

Fn = Fx COPYSIGN Fy

Fn = MIN(Fx. Fy)
Fn = MAX(Fx, Fy)
Fn= CLIP Fx BY Fy

Rn = FDEP Rx BY Ry

Rn = FDEP Rx BY <bit6>:<len6>

Rn = Rn OR FDEP Rx BY Ry

Rn = Rn OR FDEP Rx BY <bit6>:<lenf>
Rn = FDEP Rx BY Ry (SE)

Rn = FDEP Rx BY <bit6>:<len6> (SE)
Rn = Rn OR FDEP Rx BY Ry (SE)

Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE)
Rn = FEXT Rx BY Ry

Rn = FEXT Rx BY <bit6>:<len6>

Rn = FEXT Rx BY Ry (SE)

Rn = FEXT Rx BY <bit6>:<len6> (SE)
Rn = EXP Rx (EX)

Rn = EXP Rx

Rn = LEFTZ Rx

Rn = LEFTO Rx

Rn = FPACK Fx

Fn = FUNPACK Rx
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Creation of the digital signal processing applications
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The IMA ADPCM audiodata compression algorithm
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Data decoding in the IMA ADPCM algorithm

C[n] Adaptive Dq[n] N Xp[n] N
' dequantizer '
 — |
=
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_ Index
Lower 3 bits of ) adjustment __ _ Step size
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Index from the
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Mathematical description of the IMA ADPCM

Decoding:

_(C, +0.5)-Sifl,]

X, =X _,+D,

+1 = In + Ia[‘Cn‘]

la:

Coding:
X, =0 X, =0
,=0 l, =0
Dn — Xn o Xn—l D
n
C - 4. Dn
n -
Sil,]
In+1=In+Ia[‘Cn‘] n
SI:
7, 8, 9, 10, 11, 12, 13, 14, lo,
17, 19, 21, 23, 25, 28, 31, 34, 37,
41, 45, 50, 55, 60, 66, 73, 80, 88,
97, 107, 118, 130, 143, 157, 173, 190, 209,
230, 253, 279, 307, 337, 371, 408, 449, 494,
544, 598, 658, 724, 796, 876, 963, 1060, 11660,
1282, 1411, 1552, 1707, 1878, 2006, 2272, 2499, 2749,
3024, 3327, 3660, 40206, 4428, 4871, 5358, 5894, 0484,
7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289,
16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767




Methods for quality testing of various compression algorithms

The average
AFR
comparison
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The method implies subjective comparison of a sounding quality. The tested signal is

o) é) represented in two variants: the original and the compressed signal. The user attentively
c c listens the original signal once. Then the user "blindly" listens the unknown order of N original
[oe) ﬁ signals and N compressed signals. During each separate listening the user makes a decision,
¥ O if he listens to the original signal or not, writing down the estimation. Upon the end of the

'}

testing the correct/incorrect decisions ratio is evaluated. The closer this ratio is to 1, the less
different the original and compressed signals are.



Conclusions and results

Performed the analysis of methods and formats of a digital sound
representation

e Existed methods of digital audiostreams compression investigated
e Implemented the laboratory complex and developed methodology for

creating applications of digital audiostreams compression and use of
the complex

Implemented the algorithm for audiostream compression and
decompression, providing 4-time volume reduction for the audiodata
in real time

Methods for quality testing of various algorithms for audiostreams
compression are offered

On the theme of this work 3 articles were announced in science
conference reports corpus and in periodical magazine, also the study
guide was published



