Многономенклатурное мелкосерийное производство соединительных кабелей

Студент

Лопаткин К.А.

Руководитель

Гриднев В.Н.

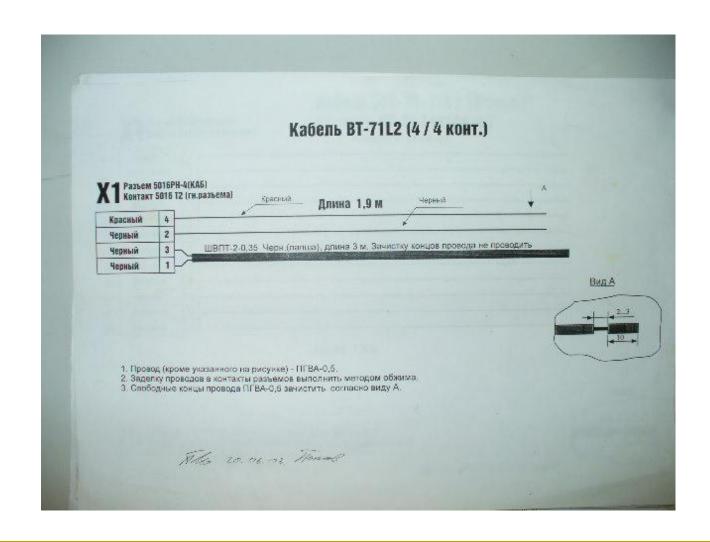
Электропроводка была есть и будет в:

- бытовых машинах

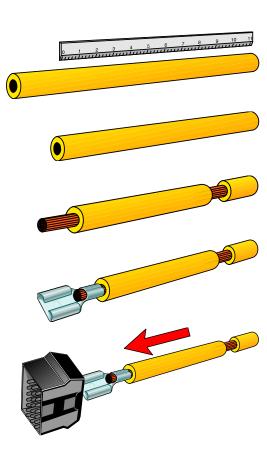
- промышленном оборудовании

автомобиляхи авиации...

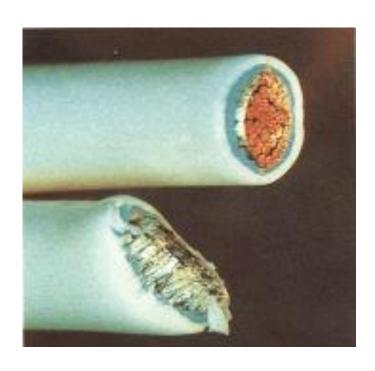
...везде, где надо передать сигналы и энергию.


Изделия кабельного участка ООО«Альтоника»

ООО «Альтоника» использует в своей продукции более 100 типов кабелей различного назначения.

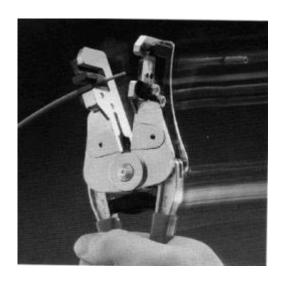

А также занимается изготовлением кабельных изделий под заказ.

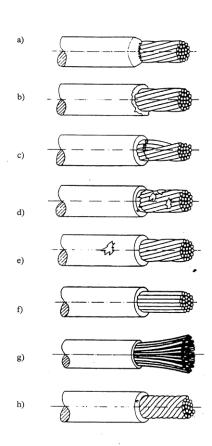
Типовая схема сборки кабеля



Основные операции при изготовлении соединительных кабелей

-) измерение
- **)** резка
- > зачистка
-) опрессовка(пайка, лужение)
-) монтаж корпуса
- **>**контроль

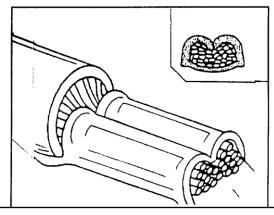

Мерная резка


Процесс порезки провода может оказывать влияние на последующие процессы снятия изоляции и обжима контактов.

Предпочтительным инструментом для резки является инструмент, у которого лезвия проходят одно мимо другого, как у ножниц, что обеспечивает минимальное коробление жилок и их расплющивание.

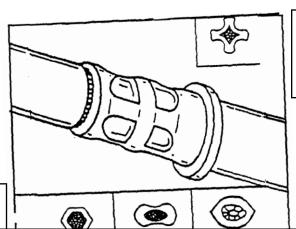
Зачистка

Снятие изоляции для последующего обжима в иглах контактов требует сохранения целостности витых жилок провода.

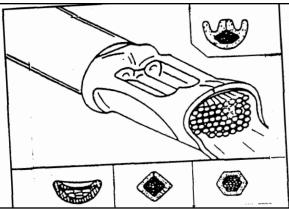


Дефекты при зачистке

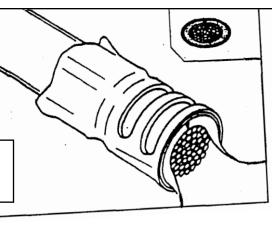
Действующие технологии соединений в изготовлении электропроводки

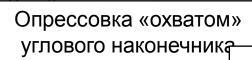

- Накрутка используется в связи (кроссировка телефонных пар), ранее и в вычислительной технике. Недостаток – сложность процесса, ненадежность соединения.
- Пайка традиционная технология, применяемая в военной технике и почти на всех действующих производствах недостатки: флюс, расход припоя, вредность процессов, ненадежность во времени, связанная с наличием остатков, как правило, кислотных флюсов, что вызывает необратимые явления в соединении
- Сварка (контактная, электро-, газо-, УЗ-) традиционный метод в энергетике и машиностроении, в электронике и электротехнике.
 Существенный недостаток наличие примесей, активных газов (опасных в т.ч), применение присадок, нарушение физических свойств деталей и сложность процессов, особенно в электронике.
- Пайка+опрессовка для повышения надежности соединений данная технология до сих пор используется в военной и траснпортной электротехнике, как правило в проводах больших сечений. Наличие в процессе кислотных флюсов сводит на «нет» заботы о надежности, срок службы соединений не превышает 5 лет.
- Механический контакт традиционное соединение в автомобилестроении, транспорте. Провод должен быть предварительно опрессован, наиболее распространен в энергетике.

Способы опрессовки провода


Продольная опрессовка прямого наконечника

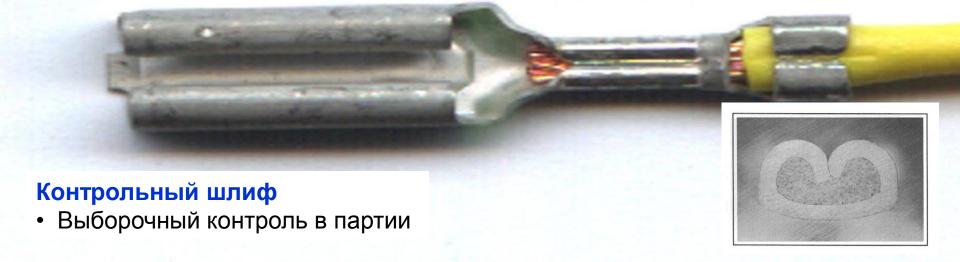
В зависимости от размеров сечений проводов, условий эксплуатации, геометрических размеров соединений применяются различные способы опрессовки



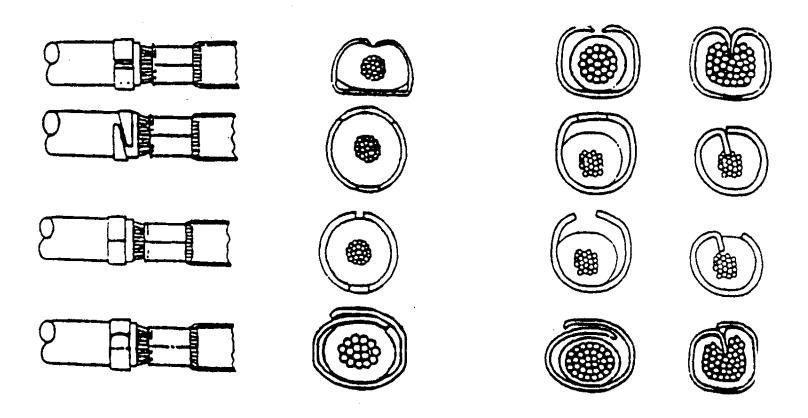

Многопозиционная опрессовка цилиндрического наконечника

Опрессовка «продавливанием» прямого наконечника. Форма может быть различной

Опрессовка цилиндрического наконечника

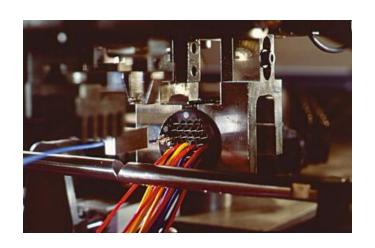

Зоны контроля качества

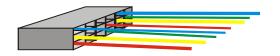
Зона опрессовки (Критерии качества)


- Высота опрессовки табличный параметр.
- Показатель надежности соединения переходного сопротивления
- **Свободные жилы** показатель качественной опрессовки по всей длине гарантия плотного контакта
- **Наличие «юбочки»** со стороны зоны опрессовки изоляции Показатель устойчивости к изгибам, вибрациям

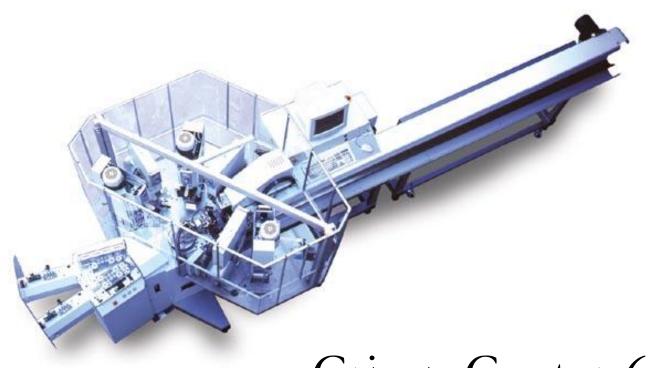
Зона опрессовки на изоляцию

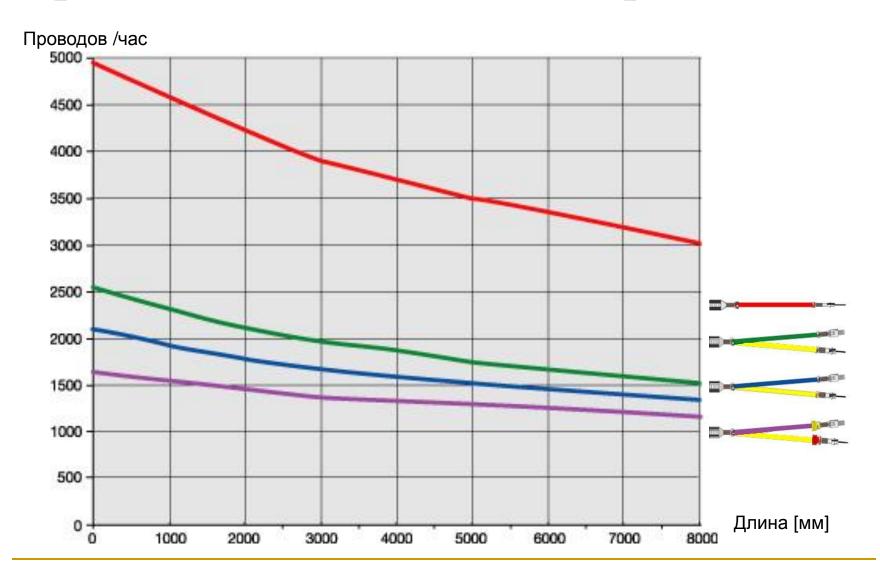
• Гарантия защиты от К3 — Сдвиг изоляции невозможен Край изоляции должен быть ясно виден




Анализ дефектов опрессованного соединения

Дефекты при опрессовке контакта на изоляцию


Монтаж корпуса


- тест на столкновение перед входом в корпусной отсек
- усилие не должно превышать определенные пределы
- □ контроль крайнего положения
- □ контроль правильной блокировки клемм

Принятое решение – полная автоматизация

Crimp Center 60

Производительность Crimp Center 60

Возможности обработки

Зачистка со сдвигом изоляции Зачистка с полным снятием изоляции Зачистка двойной изоляции Промежуточная изоляция Предварительная подача TopNet Размотчик Термопечать Струйная печать Укладка провода с транспортера Контроль за уплотнением с обеих сторон Контроль усилия опрессовки Интегрированное измерение высоты опрессовки Интегрированное измерение усилия двусторонние вытягивания Контроль за соединением встык

Искровой измерительный прибор Разбраковка провода Последовательность операций Сортировка по партиям Объединение в единую сеть Скрутка и флюсование/лужение Опрессовка, двусторонняя Программируемая высота опрессовки Двойная опрессовка, Функция двойного хода (крышки закрыты), Установка уплотнителей, двусторонняя Установка гильз, двусторонняя Цилиндрические наконечники для жил, MIL-опрессовка, двусторонняя

Преимущества

- Улучшения качества продукции
- Увеличение объемов выпуска
- Гибкость производства
- Интегрирование с АСУ