Московский Государственный Технический Университет им. Н.Э. Баумана

Кафедра ИУ-4 «Проектирование и технология производства электронных средств»

Разработка и исследования техпроцесса монтажа кристаллов ИМС на подложку

Студент: Мизинина А.И.

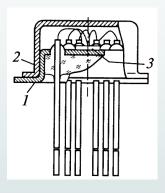
Руководитель: доц.,к.т.н. Журавлева Л.В.

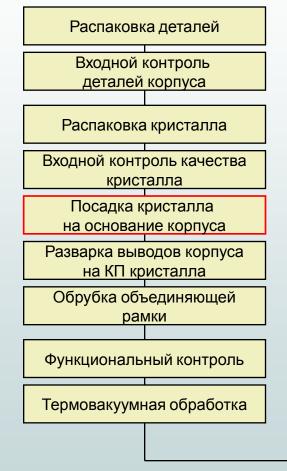
Москва, 2007 г.

Объект и предмет исследования

Объект исследования – технологический процесс сборки ИМС.

Предмет исследования — методы и средства оптимизации технологического процесса монтажа кристаллов

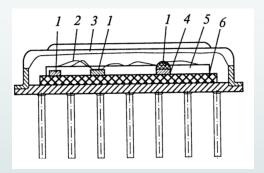

Цель работы – оптимизированный технологический процесс монтажа кристалла.


Решаемые задачи:

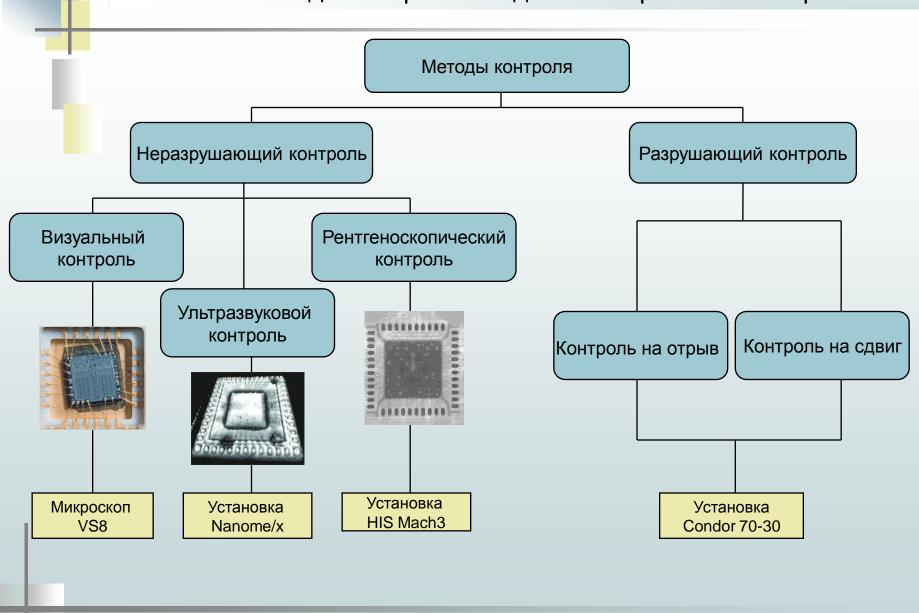
- 1. Провести анализ типовых ТП сборки ИМС
- 2. Провести анализ дефектов и причин их появления при монтаже кристалла
- 3. Провести анализ базового ТП посадки кристалла методом приклеивания
- 4. Разработать и исследовать ТП монтажа кристалла

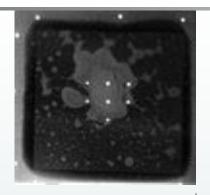
Типовые ТП монтажа кристалла

Технологический процесс сборки дискретных ИМС



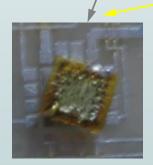
Типовые ТП монтажа кристалла


Технологический процесс сборки ГИС

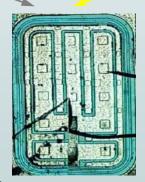


Методы контроля соединений при монтаже кристалла

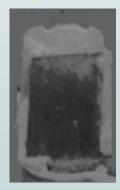
Виды дефектов посадки кристалла


Пористость в соединении

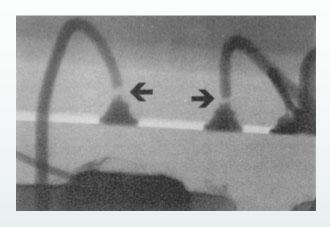
Рассповния


Расслоения в соединении

Метод пайки

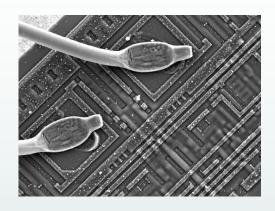

Метод приклеивания

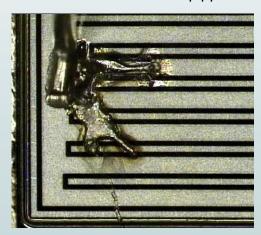
Смещение кристалла относительно КП



Трещины на кристалле

Наплывы материала (припоя, клея)

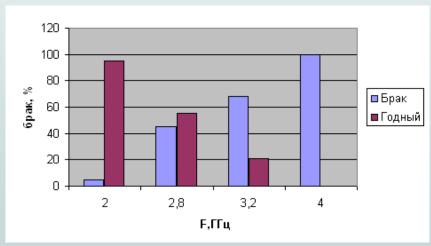

Виды дефектов присоединения выводов кристалла


Обрыв проволочных выводов

Провисание выводов

Смещение вывода относительно контактной площадки

Повреждение поверхности кристалла


Базовый ТП посадки кристалла методом приклеивания

Клей ЭЧЭ-С _{үэкэ-с}= 6 Вт/м°С

Результаты функционального контроля электрических параметров

Оптимизация операции посадки кристалла

Планирование эксперимента проводилось методом ортогонального планирования

Интервалы и уровни варьирования

Натуральное обозначение фактора	Т, К	t, c	P, H	А, мм
Основной уровень варьирования, X_{j}^{0}	600	5	3	0,3
Интервал варьирования ${}_{\!A}^{\!A\!X}{}_{j}$	20	3	1,5	0,1
Верхний уровень, (+1)	620	8	4,5	0,4
Нижний уровень, (-1)	580	2	1,5	0,2

Т- температура (X1)

t – время воздействия ультразвука (X2)

P – усилие прижима (X3)

А – амплитуда ультразвуковых колебаний (Х4)

Оптимизация операции посадки кристалла

Ортогональная матрица планирования

№ опыта	ΧO	X1	X2	ХЗ	Х4	x1· x2	x1· x3	x1·x4	x2·x3	x2·x4	x3·x4	x1·x1	x2·x2	x3·x3	x4·x4	Үср
1	+1	-1	-1	-1	-1	+1	+1	+1	+1	+1	+1	0,2	0,2	0,2	0,2	93,8
2	+1	+1	-1	-1	-1	-1	-1	-1	+1	+1	+1	0,2	0,2	0,2	0,2	94,4
3	+1	-1	+1	-1	-1	-1	+1	+1	-1	-1	+1	0,2	0,2	0,2	0,2	95,8
4	+1	+1	+1	-1	-1	+1	-1	-1	-1	-1	+1	0,2	0,2	0,2	0,2	96,2
5	+1	-1	-1	+1	-1	+1	-1	+1	-1	+1	-1	0,2	0,2	0,2	0,2	93,1
6	+1	+1	-1	+1	-1	-1	+1	-1	-1	+1	-1	0,2	0,2	0,2	0,2	93,7
7	+1	-1	+1	+1	-1	-1	-1	+1	+1	-1	-1	0,2	0,2	0,2	0,2	94,5
8	+1	+1	+1	+1	-1	+1	+1	-1	+1	-1	-1	0,2	0,2	0,2	0,2	95,3
9	+1	-1	-1	-1	+1	+1	+1	-1	+1	-1	-1	0,2	0,2	0,2	0,2	94,1
10	+1	+1	-1	-1	+1	-1	-1	+1	+1	-1	-1	0,2	0,2	0,2	0,2	95,4
11	+1	-1	+1	-1	+1	-1	+1	-1	-1	+1	-1	0,2	0,2	0,2	0,2	96,2
12	+1	+1	+1	-1	+1	+1	-1	+1	-1	+1	-1	0,2	0,2	0,2	0,2	96,5
13	+1	-1	-1	+1	+1	+1	-1	-1	-1	-1	+1	0,2	0,2	0,2	0,2	94,1
14	+1	+1	-1	+1	+1	-1	+1	+1	-1	-1	+1	0,2	0,2	0,2	0,2	94,7
15	+1	-1	+1	+1	+1	-1	-1	-1	1	1	1	0,2	0,2	0,2	0,2	95,6
16	+1	+1	+1	+1	+1	1	1	1	1	1	1	0,2	0,2	0,2	0,2	96,2
17	+1	+1,414	0	0	0	0	0	0	0	0	0	1,2	-0,8	-0,8	-0,8	94,1
18	+1	-1,414	0	0	0	0	0	0	0	0	0	1,2	-0,8	-0,8	-0,8	92,8
19	+1	0	+1,414	0	0	0	0	0	0	0	0	-0,8	1,2	-0,8	-0,8	95,1
20	+1	0	-1,414	0	0	0	0	0	0	0	0	-0,8	1,2	-0,8	-0,8	93,5
21	+1	0	0	+1,414	0	0	0	0	0	0	0	-0,8	-0,8	1,2	-0,8	94,5
22	+1	0	0	-1,414	0	0	0	0	0	0	0	-0,8	-0,8	1,2	-0,8	94,5
23	+1	0	0	0	+1,414	0	0	0	0	0	0	-0,8	-0,8	-0,8	1,2	95,2
24	+1	0	0	0	-1,414	0	0	0	0	0	0	-0,8	-0,8	-0,8	1,2	94,9
25	+1	0	0	0	0	0	0	0	0	0	0	-0,8	-0,8	-0,8	-0,8	95,1

Оптимизация операции разварки выводов кристалла

Планирование эксперимента проводилось методом ортогонального планирования

Интервалы и уровни варьирования

Натуральное обозначение фактора	Рузг, Вт	F, r	t, c	T, K
Основной уровень варьирования,	10	90	40	403
Интервал варьирования,	2	20	10	40
Верхний уровень, (+1)	12	110	50	443
Нижний уровень, (-1)	8	70	30	363

Рузг- мощность ультразвукового импульса (X1)

F – давление инструмента (X2)

t – время, действия ультразвукового импульса (X3)

T – температура в зоне сварки (X4)

Оптимизация операции разварки выводов кристалла

Ортогональная матрица планирования

№ опыта	X0	X1	X2	Х3	X4	x1· x2	x1· x3	x1·x 4	x2·x 3	x2·x 4	x3·x 4	x1·x 1	x2·x2	x3·x 3	x4·x 4	Үср
1	+1	-1	-1	-1	-1	+1	+1	+1	+1	+1	+1	0,2	0,2	0,2	0,2	5,4
2	+1	+1	-1	-1	-1	-1	-1	-1	+1	+1	+1	0,2	0,2	0,2	0,2	6,2
3	+1	-1	+1	-1	-1	-1	+1	+1	-1	-1	+1	0,2	0,2	0,2	0,2	6,6
4	+1	+1	+1	-1	-1	+1	-1	-1	-1	-1	+1	0,2	0,2	0,2	0,2	9,2
5	+1	-1	-1	+1	-1	+1	-1	+1	-1	+1	-1	0,2	0,2	0,2	0,2	5,9
6	+1	+1	-1	+1	-1	-1	+1	-1	-1	+1	-1	0,2	0,2	0,2	0,2	10,6
7	+1	-1	+1	+1	-1	-1	-1	+1	+1	-1	-1	0,2	0,2	0,2	0,2	7,7
8	+1	+1	+1	+1	-1	+1	+1	-1	+1	-1	-1	0,2	0,2	0,2	0,2	10,3
9	+1	-1	-1	-1	+1	+1	+1	-1	+1	-1	-1	0,2	0,2	0,2	0,2	6,5
10	+1	+1	-1	-1	+1	-1	-1	+1	+1	-1	-1	0,2	0,2	0,2	0,2	12,5
11	+1	-1	+1	-1	+1	-1	+1	-1	-1	+1	-1	0,2	0,2	0,2	0,2	11,5
12	+1	+1	+1	-1	+1	+1	-1	+1	-1	+1	-1	0,2	0,2	0,2	0,2	9,7
13	+1	-1	-1	+1	+1	+1	-1	-1	-1	-1	+1	0,2	0,2	0,2	0,2	10,8
14	+1	+1	-1	+1	+1	-1	+1	+1	-1	-1	+1	0,2	0,2	0,2	0,2	12,3
15	+1	-1	+1	+1	+1	-1	-1	-1	1	1	1	0,2	0,2	0,2	0,2	9,9
16	+1	+1	+1	+1	+1	1	1	1	1	1	1	0,2	0,2	0,2	0,2	10,5
17	+1	+1,414	0	0	0	0	0	0	0	0	0	1,2	-0,8	-0,8	-0,8	11,9
18	+1	-1,414	0	0	0	0	0	0	0	0	0	1,2	-0,8	-0,8	-0,8	9,2
19	+1	0	+1,414	0	0	0	0	0	0	0	0	-0,8	1,2	-0,8	-0,8	10,8
20	+1	0	-1,414	0	0	0	0	0	0	0	0	-0,8	1,2	-0,8	-0,8	10,2
21	+1	0	0	+1,414	0	0	0	0	0	0	0	-0,8	-0,8	1,2	-0,8	10,1
22	+1	0	0	-1,414	0	0	0	0	0	0	0	-0,8	-0,8	1,2	-0,8	8,4
23	+1	0	0	0	+1,414	0	0	0	0	0	0	-0,8	-0,8	-0,8	1,2	9,9
24	+1	0	0	0	-1,414	0	0	0	0	0	0	-0,8	-0,8	-0,8	1,2	8,3
25	+1	0	0	0	0	0	0	0	0	0	0	-0,8	-0,8	-0,8	-0,8	11,3

Оптимизация операции посадки кристалла

Уравнение математической модели операции посадки кристалла:

$$y = -137,907 + 0,7825\widetilde{X}_{1} - 0,52444\widetilde{X}_{2} - 1,14333\widetilde{X}_{3} - \\ -32\widetilde{X}_{4} + 0,833333\widetilde{X}_{3}\widetilde{X}_{4} - 0,000637\widetilde{X}_{1}^{2} + 0,0777\widetilde{X}_{2}^{2} + \\ +0,12\widetilde{X}_{3}^{2} + 54.5\widetilde{X}_{4}^{2}$$

Максимальное значение у=96,53 достигается при значениях:

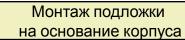
$$\widetilde{X}_1 = 613K$$

$$\tilde{X}_2 = 7.3c$$

$$\tilde{X}_3 = 4,12H$$

$$\widetilde{X}_4 = 0.35$$
 мм

Оптимизация операции разварки выводов кристалла


Уравнение математической модели операции разварки выводов кристалла

$$Y = 9,428 + 1,04X_{1} + 0,32X_{2} + 0,64X_{3} + 1,203X_{4} - 0,56X_{1}X_{2} - 0,275X_{1}X_{4} - 0,475X_{2}X_{3} - 0,3875X_{2}X_{4} - 0,2375X_{3}X_{4} - 0,745X_{3}^{2} - 0,82X_{4}^{2}$$

Максимальное значение у=13.1 достигается при значениях:

$$\widetilde{X}_1 = 12,3Bm$$
 $\widetilde{X}_3 = 41c$ $\widetilde{X}_2 = 83e$ $\widetilde{X}_4 = 424,1K$

Оптимизированный ТП монтажа кристалла

Пайка микрополосковых плат на подложку

Разварка внутрисхемных перемычек

Посадка кристалла на подложку

Разварка выводов кристалла к КП

Пайка выводов модуля усилительного каскада

Функциональный контроль электрический параметров

Герметизация корпуса

Контроль герметичности на малые течи

Лазерная маркировка

T=613 K t =7,3 c P =4,12 H A= 0,35 MM

P y3 =12,3 Bτ F= 83 Γ t= 41 c T= 424 K

- 1. Проведен анализ типовых технологический процессов сборки микросхем и основных дефектов и причины их возникновения.
- 2. Выбраны метода и средства повышения теплоотвода при посадки кристалла и понижение температуры при разварки выводов кристалла
- 3. Разработан рабочий технологический процесс сборки модуля каскадного усилителя с операциями посадки кристалла методом эвтектической пайки и разварки выводов ультразвуковой сварки.
- 4. Разработана математическая модель для операции посадки кристалла и разварки выводов кристалла.
- 5. Разработан итоговый технологический процесс монтажа кристалла с оптимальными технологическими режимами.